Geographic coordinate system
Geodesy  

Fundamentals 

Concepts 

Standards (history)


A geographic coordinate system (GCS) is a coordinate system associated with positions on Earth (geographic position). A GCS can give positions:
 as spherical coordinate system using latitude, longitude, and elevation;^{[1]}
 as map coordinates projected onto the plane, possibly including elevation;^{[1]}
 as earthcentered, earthfixed (ECEF) Cartesian coordinates in 3space;
 as a set of numbers, letters or symbols forming a geocode.
In geodetic coordinates and map coordinates, the coordinate tuple is decomposed such that one of the numbers represents a vertical position and two of the numbers represent a horizontal position.^{[2]}
History
The invention of a geographic coordinate system is generally credited to Eratosthenes of Cyrene, who composed his nowlost Geography at the Library of Alexandria in the 3rd century BC.^{[3]} A century later, Hipparchus of Nicaea improved on this system by determining latitude from stellar measurements rather than solar altitude and determining longitude by timings of lunar eclipses, rather than dead reckoning. In the 1st or 2nd century, Marinus of Tyre compiled an extensive gazetteer and mathematicallyplotted world map using coordinates measured east from a prime meridian at the westernmost known land, designated the Fortunate Isles, off the coast of western Africa around the Canary or Cape Verde Islands, and measured north or south of the island of Rhodes off Asia Minor. Ptolemy credited him with the full adoption of longitude and latitude, rather than measuring latitude in terms of the length of the midsummer day.^{[4]}
Ptolemy's 2ndcentury Geography used the same prime meridian but measured latitude from the Equator instead. After their work was translated into Arabic in the 9th century, AlKhwārizmī's Book of the Description of the Earth corrected Marinus' and Ptolemy's errors regarding the length of the Mediterranean Sea,^{[note 1]} causing medieval Arabic cartography to use a prime meridian around 10° east of Ptolemy's line. Mathematical cartography resumed in Europe following Maximus Planudes' recovery of Ptolemy's text a little before 1300; the text was translated into Latin at Florence by Jacobus Angelus around 1407.
In 1884, the United States hosted the International Meridian Conference, attended by representatives from twentyfive nations. Twentytwo of them agreed to adopt the longitude of the Royal Observatory in Greenwich, England as the zeroreference line. The Dominican Republic voted against the motion, while France and Brazil abstained.^{[5]} France adopted Greenwich Mean Time in place of local determinations by the Paris Observatory in 1911.
Geodetic datum
In order to be unambiguous about the direction of "vertical" and the "horizontal" surface above which they are measuring, mapmakers choose a reference ellipsoid with a given origin and orientation that best fits their need for the area to be mapped. They then choose the most appropriate mapping of the spherical coordinate system onto that ellipsoid, called a terrestrial reference system or geodetic datum.
Datums may be global, meaning that they represent the whole Earth, or they may be local, meaning that they represent an ellipsoid bestfit to only a portion of the Earth. Points on the Earth's surface move relative to each other due to continental plate motion, subsidence, and diurnal Earth tidal movement caused by the Moon and the Sun. This daily movement can be as much as a meter. Continental movement can be up to 10 cm a year, or 10 m in a century. A weather system highpressure area can cause a sinking of 5 mm. Scandinavia is rising by 1 cm a year as a result of the melting of the ice sheets of the last ice age, but neighboring Scotland is rising by only 0.2 cm. These changes are insignificant if a local datum is used, but are statistically significant if a global datum is used.^{[1]}
Examples of global datums include World Geodetic System (WGS 84, also known as EPSG:4326 ^{[6]}), the default datum used for the Global Positioning System,^{[note 2]} and the International Terrestrial Reference Frame (ITRF), used for estimating continental drift and crustal deformation.^{[7]} The distance to Earth's center can be used both for very deep positions and for positions in space.^{[1]}
Local datums chosen by a national cartographical organization include the North American Datum, the European ED50, and the British OSGB36. Given a location, the datum provides the latitude and longitude . In the United Kingdom there are three common latitude, longitude, and height systems in use. WGS 84 differs at Greenwich from the one used on published maps OSGB36 by approximately 112 m. The military system ED50, used by NATO, differs from about 120 m to 180 m.^{[1]}
The latitude and longitude on a map made against a local datum may not be the same as one obtained from a GPS receiver. Converting coordinates from one datum to another requires a datum transformation such as a Helmert transformation, although in certain situations a simple translation may be sufficient.^{[8]}
In popular GIS software, data projected in latitude/longitude is often represented as a Geographic Coordinate System. For example, data in latitude/longitude if the datum is the North American Datum of 1983 is denoted by 'GCS North American 1983'.
Horizontal coordinates
Latitude and longitude
The "latitude" (abbreviation: Lat., φ, or phi) of a point on Earth's surface is the angle between the equatorial plane and the straight line that passes through that point and through (or close to) the center of the Earth.^{[note 3]} Lines joining points of the same latitude trace circles on the surface of Earth called parallels, as they are parallel to the Equator and to each other. The North Pole is 90° N; the South Pole is 90° S. The 0° parallel of latitude is designated the Equator, the fundamental plane of all geographic coordinate systems. The Equator divides the globe into Northern and Southern Hemispheres.
The "longitude" (abbreviation: Long., λ, or lambda) of a point on Earth's surface is the angle east or west of a reference meridian to another meridian that passes through that point. All meridians are halves of great ellipses (often called great circles), which converge at the North and South Poles. The meridian of the British Royal Observatory in Greenwich, in southeast London, England, is the international prime meridian, although some organizations—such as the French Institut Géographique National—continue to use other meridians for internal purposes. The prime meridian determines the proper Eastern and Western Hemispheres, although maps often divide these hemispheres further west in order to keep the Old World on a single side. The antipodal meridian of Greenwich is both 180°W and 180°E. This is not to be conflated with the International Date Line, which diverges from it in several places for political and convenience reasons, including between far eastern Russia and the far western Aleutian Islands.
The combination of these two components specifies the position of any location on the surface of Earth, without consideration of altitude or depth. The grid formed by lines of latitude and longitude is known as a "graticule".^{[9]} The origin/zero point of this system is located in the Gulf of Guinea about 625 km (390 mi) south of Tema, Ghana.
Length of a degree
On the GRS80 or WGS84 spheroid at sea level at the Equator, one latitudinal second measures 30.715 meters, one latitudinal minute is 1843 meters and one latitudinal degree is 110.6 kilometers. The circles of longitude, meridians, meet at the geographical poles, with the west–east width of a second naturally decreasing as latitude increases. On the Equator at sea level, one longitudinal second measures 30.92 meters, a longitudinal minute is 1855 meters and a longitudinal degree is 111.3 kilometers. At 30° a longitudinal second is 26.76 meters, at Greenwich (51°28′38″N) 19.22 meters, and at 60° it is 15.42 meters.
On the WGS84 spheroid, the length in meters of a degree of latitude at latitude φ (that is, the number of meters you would have to travel along a north–south line to move 1 degree in latitude, when at latitude φ), is about
 ^{[10]}
The returned measure of meters per degree latitude varies continuously with latitude.
Similarly, the length in meters of a degree of longitude can be calculated as
 ^{[10]}
(Those coefficients can be improved, but as they stand the distance they give is correct within a centimeter.)
The formulae both return units of meters per degree.
An alternative method to estimate the length of a longitudinal degree at latitude is to assume a spherical Earth (to get the width per minute and second, divide by 60 and 3600, respectively):
where Earth's average meridional radius is 6,367,449 m. Since the Earth is an oblate spheroid, not spherical, that result can be off by several tenths of a percent; a better approximation of a longitudinal degree at latitude is
where Earth's equatorial radius equals 6,378,137 m and ; for the GRS80 and WGS84 spheroids, b/a calculates to be 0.99664719. ( is known as the reduced (or parametric) latitude). Aside from rounding, this is the exact distance along a parallel of latitude; getting the distance along the shortest route will be more work, but those two distances are always within 0.6 meter of each other if the two points are one degree of longitude apart.
Latitude  City  Degree  Minute  Second  ±0.0001° 

60°  Saint Petersburg  55.80 km  0.930 km  15.50 m  5.58 m 
51° 28′ 38″ N  Greenwich  69.47 km  1.158 km  19.30 m  6.95 m 
45°  Bordeaux  78.85 km  1.31 km  21.90 m  7.89 m 
30°  New Orleans  96.49 km  1.61 km  26.80 m  9.65 m 
0°  Quito  111.3 km  1.855 km  30.92 m  11.13 m 
Map projection
To establish the position of a geographic location on a map, a map projection is used to convert geodetic coordinates to plane coordinates on a map; it projects the datum ellipsoidal coordinates and height onto a flat surface of a map. The datum, along with a map projection applied to a grid of reference locations, establishes a grid system for plotting locations. Common map projections in current use include the Universal Transverse Mercator (UTM), the Military Grid Reference System (MGRS), the United States National Grid (USNG), the Global Area Reference System (GARS) and the World Geographic Reference System (GEOREF).^{[11]} Coordinates on a map are usually in terms northing N and easting E offsets relative to a specified origin.
Map projection formulas depend on the geometry of the projection as well as parameters dependent on the particular location at which the map is projected. The set of parameters can vary based on the type of project and the conventions chosen for the projection. For the transverse Mercator projection used in UTM, the parameters associated are the latitude and longitude of the natural origin, the false northing and false easting, and an overall scale factor.^{[12]} Given the parameters associated with particular location or grin, the projection formulas for the transverse Mercator are a complex mix of algebraic and trigonometric functions.^{[12]}^{:4554}
UTM and UPS systems
The Universal Transverse Mercator (UTM) and Universal Polar Stereographic (UPS) coordinate systems both use a metricbased Cartesian grid laid out on a conformally projected surface to locate positions on the surface of the Earth. The UTM system is not a single map projection but a series of sixty, each covering 6degree bands of longitude. The UPS system is used for the polar regions, which are not covered by the UTM system.
Stereographic coordinate system
During medieval times, the stereographic coordinate system was used for navigation purposes.^{[citation needed]} The stereographic coordinate system was superseded by the latitudelongitude system. Although no longer used in navigation, the stereographic coordinate system is still used in modern times to describe crystallographic orientations in the fields of crystallography, mineralogy and materials science.^{[citation needed]}
Vertical coordinates
Vertical coordinates include height and depth.
3D Cartesian coordinates
Every point that is expressed in ellipsoidal coordinates can be expressed as an rectilinear x y z (Cartesian) coordinate. Cartesian coordinates simplify many mathematical calculations. The Cartesian systems of different datums are not equivalent.^{[2]}
Earthcentered, Earthfixed
The Earthcentered Earthfixed (also known as the ECEF, ECF, or conventional terrestrial coordinate system) rotates with the Earth and has its origin at the center of the Earth.
The conventional righthanded coordinate system puts:
 The origin at the center of mass of the Earth, a point close to the Earth's center of figure
 The Z axis on the line between the North and South Poles, with positive values increasing northward (but does not exactly coincide with the Earth's rotational axis)^{[13]}
 The X and Y axes in the plane of the Equator
 The X axis passing through extending from 180 degrees longitude at the Equator (negative) to 0 degrees longitude (prime meridian) at the Equator (positive)
 The Y axis passing through extending from 90 degrees west longitude at the Equator (negative) to 90 degrees east longitude at the Equator (positive)
An example is the NGS data for a brass disk near Donner Summit, in California. Given the dimensions of the ellipsoid, the conversion from lat/lon/heightaboveellipsoid coordinates to XYZ is straightforward—calculate the XYZ for the given latlon on the surface of the ellipsoid and add the XYZ vector that is perpendicular to the ellipsoid there and has length equal to the point's height above the ellipsoid. The reverse conversion is harder: given XYZ we can immediately get longitude, but no closed formula for latitude and height exists. See "Geodetic system." Using Bowring's formula in 1976 Survey Review the first iteration gives latitude correct within 10^{11} degree as long as the point is within 10000 meters above or 5000 meters below the ellipsoid.
Local tangent plane
A local tangent plane can be defined based on the vertical and horizontal dimensions. The vertical coordinate can point either up or down. There are two kinds of conventions for the frames:
 East, North, up (ENU), used in geography
 North, East, down (NED), used specially in aerospace
In many targeting and tracking applications the local ENU Cartesian coordinate system is far more intuitive and practical than ECEF or geodetic coordinates. The local ENU coordinates are formed from a plane tangent to the Earth's surface fixed to a specific location and hence it is sometimes known as a local tangent or local geodetic plane. By convention the east axis is labeled , the north and the up .
In an airplane, most objects of interest are below the aircraft, so it is sensible to define down as a positive number. The NED coordinates allow this as an alternative to the ENU. By convention, the north axis is labeled , the east and the down . To avoid confusion between and , etc. in this article we will restrict the local coordinate frame to ENU.
On other celestial bodies
Similar coordinate systems are defined for other celestial bodies such as:
 The cartographic coordinate systems for almost all of the solid bodies in the Solar System were established by Merton E. Davies of the Rand Corporation, including Mercury,^{[14]}^{[15]} Venus,^{[16]} Mars,^{[17]} the four Galilean moons of Jupiter,^{[18]} and Triton, the largest moon of Neptune.^{[19]}
 Selenographic coordinates for the Moon
See also
 Decimal degrees – Angular measurements, typically for latitude and longitude
 Geographical distance – Distance measured along the surface of the earth
 Geographic information system – System to capture, manage and present geographic data
 Geo URI scheme
 ISO 6709, standard representation of geographic point location by coordinates
 Linear referencing
 Primary direction
 Spatial reference system
Notes
 ^ The pair had accurate absolute distances within the Mediterranean but underestimated the circumference of the Earth, causing their degree measurements to overstate its length west from Rhodes or Alexandria, respectively.
 ^ WGS 84 is the default datum used in most GPS equipment, but other datums can be selected.
 ^ Alternative versions of latitude and longitude include geocentric coordinates, which measure with respect to Earth's center; geodetic coordinates, which model Earth as an ellipsoid; and geographic coordinates, which measure with respect to a plumb line at the location for which coordinates are given.
References
Citations
 ^ ^{a} ^{b} ^{c} ^{d} ^{e} A guide to coordinate systems in Great Britain (PDF), D00659 v2.3, Ordnance Survey, March 2015, archived from the original (PDF) on 24 September 2015, retrieved 22 June 2015
 ^ ^{a} ^{b} Taylor, Chuck. "Locating a Point On the Earth". Retrieved 4 March 2014.
 ^ McPhail, Cameron (2011), Reconstructing Eratosthenes' Map of the World (PDF), Dunedin: University of Otago, pp. 20–24.
 ^ Evans, James (1998), The History and Practice of Ancient Astronomy, Oxford, England: Oxford University Press, pp. 102–103, ISBN 9780199874453.
 ^ Greenwich 2000 Limited (9 June 2011). "The International Meridian Conference". Wwp.millenniumdome.com. Archived from the original on 6 August 2012. Retrieved 31 October 2012.
 ^ "WGS 84: EPSG Projection  Spatial Reference". spatialreference.org. Retrieved 5 May 2020.
 ^ Bolstad, Paul. GIS Fundamentals (PDF) (5th ed.). Atlas books. p. 102. ISBN 9780971764736.
 ^ "Making maps compatible with GPS". Government of Ireland 1999. Archived from the original on 21 July 2011. Retrieved 15 April 2008.
 ^ American Society of Civil Engineers (1 January 1994). Glossary of the Mapping Sciences. ASCE Publications. p. 224. ISBN 9780784475706.
 ^ ^{a} ^{b} [1] Geographic Information Systems  Stackexchange
 ^ "Grids and Reference Systems". National GeospatialIntelligence Agency. Retrieved 4 March 2014.
 ^ ^{a} ^{b} "Geomatics Guidance Note Number 7, part 2 Coordinate Conversions and Transformations including Formulas" (PDF). International Association of Oil and Gas Producers (OGP). pp. 9–10. Archived from the original (PDF) on 6 March 2014. Retrieved 5 March 2014.
 ^ Note on the BIRD ACS Reference Frames Archived 18 July 2011 at the Wayback Machine
 ^ Davies, M. E., "Surface Coordinates and Cartography of Mercury," Journal of Geophysical Research, Vol. 80, No. 17, June 10, 1975.
 ^ Davies, M. E., S. E. Dwornik, D. E. Gault, and R. G. Strom, NASA Atlas of Mercury, NASA Scientific and Technical Information Office, 1978.
 ^ Davies, M. E., T. R. Colvin, P. G. Rogers, P. G. Chodas, W. L. Sjogren, W. L. Akim, E. L. Stepanyantz, Z. P. Vlasova, and A. I. Zakharov, "The Rotation Period, Direction of the North Pole, and Geodetic Control Network of Venus," Journal of Geophysical Research, Vol. 97, £8, pp. 13,14 113,151, 1992.
 ^ Davies, M. E., and R. A. Berg, "Preliminary Control Net of Mars,"Journal of Geophysical Research, Vol. 76, No. 2, pps. 373393, January 10, 1971.
 ^ Merton E. Davies, Thomas A. Hauge, et. al.: Control Networks for the Galilean Satellites: November 1979 R2532JPL/NASA
 ^ Davies, M. E., P. G. Rogers, and T. R. Colvin, "A Control Network of Triton," Journal of Geophysical Research, Vol. 96, E l, pp. 15, 67515, 681, 1991.